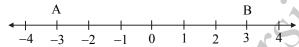


BOARD QUESTION PAPER: MARCH 2019 MATHS (PART - II)

Time: 2 Hours Max. Marks: 40


Note:

- *All* questions are compulsory. i.
- Use of calculator is not allowed. ii.
- iii. Figures to the right of questions indicate full marks.
- Draw proper figures for answers wherever necessary. iv.
- The marks of construction should be clear and distinct. Do not erase them. v.
- While writing any proof, drawing relevant figure is necessary. Also the proof should be consistent with vi. the figure.

1. Solve the following questions (Any four): (A)

[4]

- i. If $\triangle ABC \sim \triangle PQR$ and $\angle A = 60^{\circ}$, then $\angle P = ?$
- In right-angled $\triangle ABC$, if $\angle B = 90^{\circ}$, AB = 6, BC = 8, then find AC ii.
- Write the length of largest chord of a circle with radius 3.2 cm. iii.
- From the given number line, find d(A, B): iv.

- Find the value of $\sin 30^{\circ} + \cos 60^{\circ}$. V.
- vi. Find the area of a circle of radius 7 cm.

Solve the following questions (Any two): **(B)**

[4]

- Draw seg AB of length 5.7 cm and bisect it. i.
- In right-angled triangle PQR, if $\angle P = 60^{\circ}$, $\angle R = 30^{\circ}$ and PR = 12, then find the values of PQ ii. and QR.
- In a right circular cone, if perpendicular height is 12 cm and radius is 5 cm, then find its slant iii. height.

Choose the correct alternative: 2. (A)

[4]

- \triangle ABC and \triangle DEF are equilateral triangles. If A(\triangle ABC) : A(\triangle DEF) = 1 : 2 and AB = 4, then i. what is the length of DE?
 - (A) $2\sqrt{2}$
- (B) 4

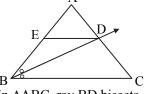
- (D) $4\sqrt{2}$

- ii. Out of the following which is a Pythagorean triplet?
- (5, 12, 14) (B) (3, 4, 2)
- (8, 15, 17)
- (5, 5, 2)
- \angle ACB is inscribed in arc ACB of a circle with centre O. If \angle ACB = 65°, find m(arc ACB): iii.
 - (A) 130°
- (B) 295°
- (C) 230°
- (D) 65°

- $1 + \tan^2 \theta = ?$ iv.
 - (A) $\sin^2 \theta$
- (B) $\sec^2 \theta$
- (C) $\csc^2 \theta$
- (D) $\cot^2 \theta$

(B) Solve the following questions (Any two):

[4]


- Construct tangent to a circle with centre A and radius 3.4 cm at any point P on it. i.
- ii. Find slope of a line passing through the points A(3, 1) and B(5, 3).
- iii. Find the surface area of a sphere of radius 3.5 cm.

3. (A) Complete the following activites (Any two):

[4]

i.

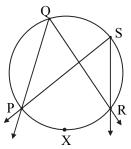
In $\triangle ABC$, ray BD bisects $\angle ABC$.

If A–D–C, A–E–B and seg ED || side BC, then prove that: $\frac{AB}{BC} = \frac{AE}{EB}$

Proof:

In \triangle ABC, ray BD is bisector of \angle ABC.

$$\therefore \frac{AB}{BC} = \boxed{}$$


...(i)(By angle bisector theorem)

In ΔABC, seg DE || side BC

$$\therefore \frac{AE}{EB} = \frac{AD}{DC}$$

$$\therefore \qquad \frac{AB}{\boxed{}} = \frac{\boxed{}}{EB}$$

ii.

Prove that, angles inscribed in the same arc are congruent.

Given: $\angle PQR$ and $\angle PSR$ are inscribed in the same arc.

Arc PXR is intercepted by the angles.

To prove: $\angle PQR \cong \angle PSR$

Proof:

$$m \angle PQR = \frac{1}{2} m(arc PXR)$$

$$m \angle$$
 = $\frac{1}{2}$ m(arc PXR)

$$\therefore \qquad m \angle \boxed{ } = m \angle PSF$$

$$\therefore$$
 $\angle PQR \cong \angle PSR$

iii. How many solid cylinders of radius 6 cm and height 12 cm can be made by melting a solid sphere of radius 18 cm?

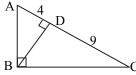
Activity: Radius of the sphere, r = 18 cm

For cylinder, radius R = 6 cm, height H = 12 cm

 $\therefore \quad \text{Number of cylinders can be made} = \frac{\text{Volume of the sphere}}{\boxed{}}$

$$=\frac{\frac{4}{3}\pi r^3}{\boxed{}}$$

$$= \frac{\frac{4}{3} \times 18 \times 18 \times 18}{\boxed{}}$$
$$= \boxed{}$$


https://universitypaper.in

Std. X: Maths (Part - II)

(B) Solve the following questions (Any two):

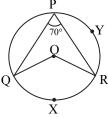
1.

In right-angled \triangle ABC, BD \perp AC.

If AD = 4, DC = 9, then find BD.

ii. Verify whether the following points are collinear or not:

iii. If $\sec \theta = \frac{25}{7}$, then find the value of $\tan \theta$.

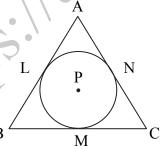

4. Solve the following questions (Any three):

[9]

[4]

i. In $\triangle PQR$, seg PM is a median, PM = 9 and PQ² + PR² = 290. Find the length of QR

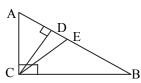
ii.


In the given figure, O is centre of circle. $\angle QPR = 70^{\circ}$ and m(arc PYR) = 160°, then find the value of each of the following:

- (a) m(arc QXR)
- (b) ∠QOR
- (c) ∠PQR
- iii. Draw a circle with radius 4.2 cm. Construct tangents to the circle from a point at a distance of 7 cm from the centre.
- iv. When an observer at a distance of 12 m from a tree looks at the top of the tree, the angle of elevation is 60°. What is the height of the tree? $(\sqrt{3} = 1.73)$

5. Solve the following questions (Any one):

[4]


1.

A circle with centre P is inscribed in the $\triangle ABC$. Side AB, side BC and side AC touch the circle at points L, M and N respectively. Radius of the circle is r.

Prove that: $A(\Delta ABC) = \frac{1}{2} (AB + BC + AC) \times r$.

ii.

In \triangle ABC, \angle ACB = 90°. seg CD \perp side AB and seg CE is angle bisector of \angle ACB.

Prove that:
$$\frac{AD}{BD} = \frac{AE^2}{BE^2}$$
.

ii.

[3]

6. Solve the following questions (Any one):

Show that the points (2, 0), (-2, 0) and (0, 2) are the vertices of a triangle. Also state with reason the type of the triangle.

10.5 cm
L 21 cm

Hittes. Hittinger Strain.

In the above figure, \Box XLMT is a rectangle. LM = 21 cm, XL = 10.5 cm. Diameter of the smaller semicircle is half the diameter of the larger semicircle. Find the area of non-shaded region.